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Cosmic Numbers and Quantum Theory 
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The cosmic numbers are considered, with emphasis on the relation N ~ p2. (Here 
N is the number of nucleons in the universe, and p, its radius in atomic units.) 
This relation is interpreted in terms of a quantum mechanical model. 

1. I N T R O D U C T I O N  

In the  p resen t  note  we cont inue  the  d i scuss ion  o f  Tarski  (1984, A p p e n -  
dix)  on the re la t ions  a m o n g  the cosmic  number s  N, p, and  G. Here  N is 
the n u m b e r  o f  nuc leons  in the universe ,  each  having  ( a pp rox ima te ly )  the 
mass  m, p is the rad ius  o f  the  universe ,  and  G,  the  grav i ta t iona l  constant .  
F o r  p and  G we use the  a tomic  units,  where  c = h = m = 1. We then  have 
the es t imates  

N -  108~ p - 104~ G ~ 10 -40 (1) 

We shou ld  now like to recal l  some o f  the  observa t ions  made  in Tarski  (1984). 
Let  us set M = mN; we see that  

G~p/M (2) 

This re la t ion  p r e s u p p o s e s  c = 1, but  it does  no t  d e p e n d  on h, nor  on m and  
N separa te ly ,  and  so it involves only c lass ical  pa ramete r s .  This re la t ion  has 
been  encoun te r ed  in a n u m b e r  o f  d iscuss ions .  I t  can be cons ide red  as an 
express ion  o f  M a c h ' s  p r inc ip le ,  insofar  as it  de te rmines  G, and  hence  inert ia ,  
in terms o f  mass  and  geometry .  

Re la t ions  among  the cosmic  number s  i n d e p e n d e n t  o f  (2) will  
necessar i ly  d e p e n d  on set t ing h = 1, and  they  also deserve a ser ious  s tudy.  
In  Tarski  (1984) we p o i n t e d  in pa r t i cu la r  to 

N ~ p  2 (3) 
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If we use arbitrary units restricted by c = 1 only, then this can be rewritten 

him ~ p / N  1/2 (4) 

This relation could be considered, in analogy to (2), as an expression of a 
quantum-theoretic extension of Mach's principle. 

Eddington (1953) offers a derivation of (3) in the context of fluctuations 
within classical statistical physics, but his analysis comes close to quantum- 
theoretic notions. In this note we will interpret (3), (4) in terms of a 
quantum-mechanical example, which exploits the ideas of Eddington, but 
in which the role of h will be in the foreground. 

It is clear that such an example must go beyond the standard framework 
of quantum mechanics, since in this framework h/m is arbitrary, and so 
cannot be determined. However, other attempts to set up quantum 
mechanics for the universe as a whole (e.g. DeWitt, 1967; Bell, 1975) have 
similarly indicated the need for modifying this framework, e.g., in view of 
the nonexistence of an outside observer. 

We emphasize that our example (in Section 3) should only be con- 
sidered as a suggestion, one that could be developed. However, we felt that 
a detailed analysis could perhaps be best postponed until the physical 
ingredients are better understood. 

It may be appropriate to mention here another reference relating to 
(3), namely, Kilmister and Tupper (1962). This book contains a variant of 
Eddington's derivation of (3), remarks bearing on the empirical relevance 
of this relation for atomic and nuclear physics, and references to previous 
articles of the authors. 

2. REMARKS ON A THEORY OF DIRECT PARTICLE 
INTERACTIONS 

The formulation of gravitation theory due to Hoyle and Narlikar (1964, 
1974) provides a useful background for our subsequent example. These 
authors define the theory by the following action, which is given in terms 
of scalar massless Green's functions G integrated along world lines: 

S= IA  ~ I f  dudvG(U,V) (5) 
I . I  

The sum extends over all pairs of particles, and A is a coupling constant. 
At this stage there is no mass parameter (however, mass appears in later 
calculations), and similarly h does not enter. Cf. also the review of Raine 
(1981). 

The underlying space-time is pseudo-Riemannian, but for the case of 
small deviations from Minkowski space, the curvature effects can be replaced 
by a gravitational field. We then retain the usual dynamical quantities Px, etc. 
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Assume now N +  1 particles, one of which is singled out and labeled 
"A." Consider the associated generator i-10~ a). According to (5), this 
generator acts on N Green's functions. To each G(A,j) there corresponds 
a distribution of  momenta p(~J). Let us suppose that we are in a situation 
where the central limit theorem is applicable, so that we may write 

-- ~ /-'xrl(J) ~ "'/~]l/2n (A)yx (6a) 

�9 --1 (A) 1/2 (A) Thus I 0x ~-*N Px , a n d  

h oc N -1/2 (6b) 

We see in (6b) the main feature of (4). We emphasize that we obtained 
this proportionality with the help of the central limit theorem, and it seems 
that it can be obtained only in this way. This theorem was also exploited 
by Eddington (1953) for analysis of fluctuations. 

Note that in the foregoing 

O(~v)d( U, V)=-o(~v)d(U, V) (7) 

We might therefore say that the dependence of h on N arises by associating 
the operators to pairs to particles rather than to individual particles. 

We remark, moreover, that it should be possible to transcribe (5) to a 
spherical background space, with which we will be dealing next. [Cf. Tarski 
(1984), Section 5.] 

3. QUANTUM PARTICLES ON Sa(p) 

The example that we are about to describe should be regarded as 
independent of  the previous, which was based on the action (5), even though 
there are evident points of contact. 

We take N +  1 quantum particles on S3(p), the three-sphere of radius 
p. The particles are assumed to be interacting, e.g., gravitationally, and the 
dynamics is assumed to depend only on relative coordinates (see below). 
In addition, we assume that the distributions of quantum-mechanical 
variables are such that the central limit theorem applies. 

We single out a particle which we label "A,"  and we consider the 
. - I~ (A)  azimuthal angle ~ on S3(p) and the generator z o~ . Then this generator 

has to affect all other particles as well. We express the result of its action 
as follows: 

_y~p~)__N1/2p~ 1/2 (A) N p~ (8) 

Then we obtain, as in (6a, b), the dependence h oc N -1/2. 
(Note that the hypothesis of  relative coordinates may require some 

corrections when angular variables are used. Note also that the gradual 
reduction of  p~ from maximum at the equator to zero at the poles has to 



876 Tarski 

be taken into account. However, these details should not change the above 
order-of-magnitude estimates.) 

To determine the constant of proportionality for h oc N -1/2, consider 
the case N = 2, which should have the characteristics of the hydrogen atom 
problem. In particular, the system should extend over (roughly) a distance 
D satisfying 

D - h / r n ~ p  (9) 

The natural choice, but not a compelling one, is 

h~ m ~ p (for small N)  (10) 

If  we accept (10) as well as h ~ N -1/2, then we immediately obtain (4), as 
desired. 

The relation (10) deserves a comment. It figures here as a new 
hypothesis. Its interpretation could be, e.g., that for small N the size of  the 
universe is determined primarily by the matter quanta, since there would 
not be enough radiation to inflate it, so to speak. 

One final comment. If  the particles are noninteracting, or if N = 1, 
then the wave function for each particle should extend over the whole space. 
By admitting interactions we reduce h/rn,  and hence the extent of the wave 
functions. This is analogous to the usual "reduction of  wave packets" by 
interactions. 
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